

Coding Café – 2 July 2025

Speaker: Özgün Balaban

What is a Coding Café?

Originating in places like Netherlands eScience Center, Programming Cafés are low-threshold, peer-driven sessions where researchers:

- Present a short demo of a programming method or tool
- Ask or offer help with code or workflows
- Create networking between people working on same issues / software
- Co-work informally, with coffee or pizza
- Focus on community over curriculum

What is reproducibility and why is it important?

Intellectual Property

Horror Stories

Software Dependency

- Software not available for your OS (Mac, Windows, Linux)
- Conclusion Endless install loops: each dependency needs another
- Only some versions work together correctly
- Programme and the second second
- Same software, different results on different systems
- Local install works, but fails elsewhere (colleague's machine, server, etc.)
- Others can't install your tool/package
- You can't reproduce an old project because its environment is gone.

Dependecy Hell

ref: https://carpentries-incubator.github.io/docker-introduction

How can software containers help your research?

https://www.youtube.com/watch?v=HelrQnm3v4g&t=18s

When Installation Fails, Research Suffers

Common Problems

- X You can't use a tool because it's not available or installable
- Property of the second of the s
- Pou can't access newer resources software setup isn't portable
- Others can't validate or build on your work it only runs on your machine

The Good News: Containers to the Rescue

What is a Container?

Motivation

You want to install research software **without breaking your system** or needing a new computer.

Imagine:

You could spin up a **separate filesystem & OS** inside your current computer

It stays isolated from your main system

It includes everything the software needs to run

What is a Container?

Definition (Docker)

"A container is a standard unit of software that packages up code and all its dependencies so the application runs reliably from one computing environment to another."

Docker

Analogy: Like a Shipping Container

What is a Container?

Before containers: cargo = mixed, fragile, chaotic
With containers: everything is grouped, portable, predictable
Software containers let you "ship" a complete working setup
to any computer with Docker installed — and it just works

Key Benefits

- Reproducibility
- Portability
- Isolation
- Consistency

Docker in a Nutshell

Docker is a tool to **build and run containers**.

- It's not the only container tool, but it's the most widely used.
- We use Docker in this workshop to create reproducible, portable environments.

What is a Container Image?

- A container is a running environment like a temporary mini-system
- A container image is the recipe or template that defines:
 - What software is inside
 - What dependencies are needed
 - How to run it

Analogy: Cookie Cutter

Analogy: Cookie Cutter?

- Image = the cookie cutter (blueprint)
- Container = the cookie (a running instance)
- Use the same cutter (image) to make multiple identical cookies (containers)
- Containers come and go; the image stays the same

Key Concepts

- Docker runs containers from images
- Images define the environment
- **Containers** are active, disposable environments

Wrap up

- Scientific software is hard to install and reproduce because of:
- Complex dependency chains
- OS differences
- Lack of documentation
- Unreliable re-installs

Wrap up

The Solution: Containers

- A container is a self-contained, portable filesystem.
 Here's what that gives you:
- Key Benefits of Using Containers in Research
- Documentation
 - → A clear, repeatable record of tools and dependencies
- Operation
 - → Runs on any system with Docker (Mac, Windows, Linux)
- Reproducibility
 - → Same software, same environment everywhere
- Configurability
 - → Allocate CPU/memory as needed for clusters or small machines

Wrap up

In this workshop, you'll learn how to:

- Run containers from existing images
- Create and share your own container images

Docker

https://labs.play-with-docker.com - online playground

Local installation

Docker commands -- version

\$ docker --version

Docker commands -- list

\$ docker container Is

Docker commands -- help

\$ docker -help

\$ docker container --help

Downloading Docker images

\$ docker image Is # list all the images

\$ docker image pull hello-world

Dockerhub

Running the hello-world container

- \$ docker container run hello-world
- \$ docker container run alpine
- \$ docker container run alpine cat /etc/os-release
- \$ docker container run alpine echo 'Hello World'

Running containers interactively

\$ docker container run -it alpine sh

Try some commands:

ls

whoami

Running containers - ubuntu

\$ docker container run ubuntu apt-get --help

Removing Images

- \$ docker image Is
- \$ docker image rm <imageid>
- \$ docker image rm hello-world

What containers are running?

- \$ docker container Is
- \$ docker container Is -all
- \$ docker container prune !!! Be careful removes all stopped containers

What is a Dockerfile?

Text file with instructions to build an image

```
FROM python:3.9
COPY . /app
WORKDIR /app
RUN pip install -r requirements.txt
CMD ["python", "app.py"]
```


What is a Dockerfile?

```
FROM python:3.12-bullseye
ENV PYTHONUNBUFFERED=1
RUN mkdir /code
WORKDIR /code
RUN pip install poetry
COPY pyproject.toml poetry.lock ./
RUN poetry install --no-root
COPY..
EXPOSE 8000
ENTRYPOINT ["poetry", "run", "python", "manage.py", "runserver", "0.0.0.0:8000"]
```


Simple Dockerfile example

```
# Use official Python image as base FROM python:3.10-slim
# Set working directory in container WORKDIR /app
# Copy script into container COPY app.py .
# Set the default command to run CMD ["python", "app.py"]
```

docker build -t hello-docker . docker run hello-docker

Check this example from github repo!

Using Volumes

docker run -v \$(pwd):/app my-python-app

Host directory is mounted into container Useful for saving outputs or code reuse

Using Volumes - example

FROM python:3.10-slim

WORKDIR /app

COPY writer.py.

CMD ["python", "writer.py"

docker build -t volume-demo .
docker run -v \$(pwd)/data:/data volume-demo

Check this example from github repo!

Networking example

Docker Networks

By default, containers are isolated
Use docker network create to define networks

docker run -p 8888:8888 -e JUPYTER_TOKEN='mypassword' jupyter/base-notebook

This creates a jupyter environment that is accessible from the browser http://localhost:8888/?token=mypassword

For more information - documentation

- Docker Overview
- Dockerfile Reference
- Volumes in Docker

Thank you

Contact:

Özgün Balaban
 Postdoctoral Researcher at ISBE
 o.balaban@tue.nl

